

labutils

Contents

	About

	Installation

	API Reference
	Miscellaneous

	Data Fusion

	Feature Comparison

	Pandas Utilities

	Contributing

Overview

labutils is a collection of utilities intended to be used by NetLab developers and researchers. labutils is a place to share useful Python code amongst NetLab members. Contributions may include miscellaneous helper functions, developer feature prototypes, or project-specific workhorse functions.

Installing

First, clone the labutils GitHub repository. labutils can then be installed by running python setup.py develop from inside the main directory.

labutils API Reference

Miscellaneous

	
labutils.hello_world()

	Instantly gratifying reward for installing labutils.
:return: None

	
labutils.new_identifier_name(base, names, sep='_')

	For finding an unused identifier name.

Examples:

	‘sum’ is taken, so ‘sum2’ is used.

	‘sum’, ‘sum2’, and ‘sum3’ are taken, so ‘sum4’ is used.

	Parameters:	base – A base string e.g.

	Returns:	

	
class labutils.bcolors

	Use this class to conveniently add colours and formatting to printed output.
Taken from https://stackoverflow.com/questions/287871/print-in-terminal-with-colors-using-python.
Example:

print(bcolors.WARNING + "Warning: No active frommets remain. Continue?" + bcolors.ENDC)

Data Fusion

This set of functions is a prototype data fusion workflow for use with recordlinkage.

	
labutils.rank_pairs(comp, by, method='cols', ascending=False)

	rank_pairs sorts pairs from a recordlinkage.Compare object, based on computed comparison values.

	Available methods:

	
	‘cols’: sort by first, column, ties broken by subsequent columns. See pandas.DataFrame.sort_values.

	‘sum’: sort by the sum of a list of columns.

	‘avg’: sort by the mean of a list of columns.

	Parameters:	
	comp (recordlinkage.Compare) – A populated Comparison object.

	by (list) – A list of column name strings to sort on by “method”.

	method (str) – A the method to sort by (see above).

	ascending (bool) – Specifies ordering of sorted rows.

	Returns:	recordlinkage.Compare

	
labutils.refine_mapping(comp, left_unique=True, right_unique=True)

	Removes pairs that violate uniqueness rules. Matches may be one-to-one (default),
one-to-many (right_unique=False), or many-to-one (left_unique=False). refine_mapping
always keeps the first instance of an index. To keep the best matches, sort (or
filter) pairs before passing to refine_mapping, e.g. with rank_pairs (or a classification
algorithm).

	Parameters:	
	comp (recordlinkage.Compare) – A populated Comparison object.

	left_unique (bool) – Specifies uniqueness of left (top-level) indices.

	right_unique (bool) – Specifies uniqueness of right (top-level) indices.

	Returns:	recordlinkage.Compare

	
labutils.fast_fuse(comp, left_suffix='_l', right_suffix='_r')

	Performs data fusion using a recordlinkage.Compare object.
All data is kept from both original data frames, renaming columns to avoid conflits.
The result is comp.vectors but with each rows populated with data from
the original two data frames corresponding to the compared pair.

	Parameters:	
	comp (recordlinkage.Compare) – Compared pairs to be fused.

	left_suffix (str) – The suffix stem to be used to resolve naming conflits for columns in df_a.

	right_suffix (str) – The suffix stem to be used to resolve naming conflits for columns in df_b.

	Returns:	pandas.DataFrame

Feature Comparison

This set of functions implement prototype comparison methods for use with recordlinkage.

	
labutils.lcss(s1, s2)

	A custom comparison function to be used with the Compare.compare() method
within recordlinkage. This is used to compare two strings, computing a
match score based on the length of the longest common substring between
the two strings.

	Parameters:	
	pandas.Series) s1 ((label,) – Series or DataFrame to compare all fields.

	pandas.Series) s2 ((label,) – Series or DataFrame to compare all fields.

	Returns:	pandas.Series of integers (the length of the substring).

	
labutils.normed_lcss(s1, s2)

	A custom comparison function to be used with the Compare.compare() method
within recordlinkage. This is used to compare two strings, computing a
match score based on the length of the longest common substring between
the two strings.

The score resulting from the comparison can be expressed as the length of
the longest common substring, divided by the length of the shorter string.
The resulting score is equal or between 0 and 1.

	Parameters:	
	pandas.Series) s1 ((label,) – Series or DataFrame to compare all fields.

	pandas.Series) s2 ((label,) – Series or DataFrame to compare all fields.

	Returns:	pandas.Series with similarity values equal or between 0 and 1.

	
labutils.fuzzy_lcss(s1, s2, match=1, mismatch=-0.5, gap=-1)

	A custom comparison function to be used with the Compare.compare() method
within recordlinkage. This is used to compare two strings, computing a
match score based on the length of the longest similar substring between
the two strings.

The score resulting from the comparison is computed using a dynamic
programming algorithm that creates a score based on the existence of
character matches, mismatches, and gaps. This algorithm is equivalent
to the Smith-Waterman algorithm used in the field of bioinformatics.
To learn more about this algorithm see:
https://en.wikipedia.org/wiki/Smith%E2%80%93Waterman_algorithm.

In this method, the raw numeric score is produced.

	Parameters:	
	pandas.Series) s1 ((label,) – Series or DataFrame to compare all fields.

	pandas.Series) s2 ((label,) – Series or DataFrame to compare all fields.

	match (float) – Value added to score for matching characters.

	mismatch (float) – Value added to score for mismatching characters.

	gap (float) – Value added to score for gaps between similar characters.

	Returns:	pandas.Series with numeric similarity values.

	
labutils.normed_fuzzy_lcss(s1, s2, match=1, mismatch=-0.5, gap=-1)

	A custom comparison function to be used with the Compare.compare() method
within recordlinkage. This is used to compare two strings, computing a
match score based on the length of the longest similar substring between
the two strings.

The score resulting from the comparison is computed using a dynamic
programming algorithm that creates a score based on the existence of
character matches, mismatches, and gaps. This algorithm is equivalent
to the Smith-Waterman algorithm used in the field of bioinformatics.
To learn more about this algorithm see:
https://en.wikipedia.org/wiki/Smith%E2%80%93Waterman_algorithm.

In this method, the final match score is normalized by dividing the observed
score by the maximum possible score (i.e. the length of the shorter string
multiplied by the “match” parameter).

	Parameters:	
	pandas.Series) s1 ((label,) – Series or DataFrame to compare all fields.

	pandas.Series) s2 ((label,) – Series or DataFrame to compare all fields.

	match (float) – Value added to score for matching characters.

	mismatch (float) – Value added to score for mismatching characters.

	gap (float) – Value added to score for gaps between similar characters.

	Returns:	pandas.Series with similarity values equal or between 0 and 1.

	
labutils.compare_in(s1, s2)

	

	Parameters:	
	s1 ((pandas.Series)) –

	s2 ((pandas.Series)) –

	Returns:	

	
labutils.compare_lists(s1, s2)

	A custom comparison function to be used with the Compare.compare() method
within recordlinkage. This is used to compare two lists, computing a
match score based on the number of items shared between two lists.

The score resulting from the comparison can be expressed as the number of
shared items between two sets, divided by the total number of unique items
in the smaller set.

	Parameters:	
	pandas.Series) s1 ((label,) – Series or DataFrame to compare all fields.

	pandas.Series) s2 ((label,) – Series or DataFrame to compare all fields.

	Returns:	pandas.Series with similarity values equal or between 0 and 1.

Pandas Utilities

	
labutils.clip_df(df, tablefmt='html')

	Copy a dataframe as plain text to your clipboard.
Probably only works on Mac. For format types see tabulate package
documentation.

	Parameters:	
	df (pandas.DataFrame) – Input DataFrame.

	tablefmt (str) – What type of table?

	Returns:	None.

	
labutils.expand_on(df, col1, col2, rename1=None, rename2=None, drop=[], drop_collections=False)

	Returns a reshaped version of extractor’s data, where unique combinations of values from col1 and col2
are given individual rows. This method was pasted form tidyextractors on 2017-07-10.

Example function call from tidymbox:

self.expand_on(my_df, 'From', 'To', ['MessageID', 'Recipient'], rename1='From', rename2='Recipient')

Columns to be expanded upon should be either atomic values or dictionaries of dictionaries. For example:

Input Data:

	col1 (Atomic)
	col2 (Dict of Dict)

	value1
	{valueA : {attr1: X1, attr2: Y1}, valueB: {attr1: X2, attr2: Y2}

	value2
	{valueC : {attr1: X3, attr2: Y3}, valueD: {attr1: X4, attr2: Y4}

Output Data:

	col1_extended
	col2_extended
	attr1
	attr2

	value1
	valueA
	X1
	Y1

	value1
	valueB
	X2
	Y2

	value2
	valueA
	X3
	Y3

	value2
	valueB
	X4
	Y4

	Parameters:	
	df (pandas.DataFrame) – Input DataFrame.

	col1 (str) – The first column to expand on. May be an atomic value, or a dict of dict.

	col2 (str) – The second column to expand on. May be an atomic value, or a dict of dict.

	rename1 (str) – The name for col1 after expansion. Defaults to col1_extended.

	rename2 (str) – The name for col2 after expansion. Defaults to col2_extended.

	drop (list) – Column names to be dropped from output.

	drop_collections (bool) – Should columns with compound values be dropped?

	Returns:	pandas.DataFrame

	
labutils.drop_collection_columns(df)

	Drops columns containing collections (i.e. sets, dicts, lists) from a DataFrame.
This method was pasted from tidyextractors on 2017-07-10.

	Parameters:	df (pandas.DataFrame) – Input data.

	Returns:	pandas.DataFrame

	
labutils.col_type_set(col, df)

	Determines the set of types present in a DataFrame column.
This function was pasted from tidyextractors on 2017-07-10.

	Parameters:	
	col (str) – A column name.

	df (pandas.DataFrame) – Input data.

	Returns:	A set of Types.

Contributing

This guide is meant for members of NetLab who want to add their code to labutils.
If to contribute to labutils, do the following:

	Make sure you’re a “collaborator” on the GitHub repo.

	Pull the latest version of labutils.

	Write and document your code. (See existing functions for examples of how to document functions. Documentation is important so that other people know how to use your function. Any functions with documentation string will automatically be included in the ReadTheDocs page.)

	Add your code to the appropriate .py file. If your code doesn’t make sense in any of the existing files, add it to misc.py or start a new .py file.

	If you create a new file, add it to __init__.py.

	Add any functions, classes, submodules, etc. to ./docs/source/api_ref.rst.

	Push your changes! Anyone who pulls the latest version will be able to import your code. Documented functions will be automatically added to the API documentation.

 Python Module Index

 l

 		 	

 		
 l	

 	
 	
 labutils	

Index

 B
 | C
 | D
 | E
 | F
 | H
 | L
 | N
 | R

B

 	
 	bcolors (class in labutils)

C

 	
 	clip_df() (in module labutils)

 	col_type_set() (in module labutils)

 	
 	compare_in() (in module labutils)

 	compare_lists() (in module labutils)

D

 	
 	drop_collection_columns() (in module labutils)

E

 	
 	expand_on() (in module labutils)

F

 	
 	fast_fuse() (in module labutils)

 	
 	fuzzy_lcss() (in module labutils)

H

 	
 	hello_world() (in module labutils)

L

 	
 	labutils (module)

 	
 	lcss() (in module labutils)

N

 	
 	new_identifier_name() (in module labutils)

 	
 	normed_fuzzy_lcss() (in module labutils)

 	normed_lcss() (in module labutils)

R

 	
 	rank_pairs() (in module labutils)

 	
 	refine_mapping() (in module labutils)

 nav.xhtml

 Table of Contents

 		labutils

 		About

 		Installation

 		API Reference

 		Miscellaneous

 		Data Fusion

 		Feature Comparison

 		Pandas Utilities

 		Contributing

_static/comment.png

_static/plus.png

_static/down.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

_static/up.png

_static/down-pressed.png

_static/ajax-loader.gif

